Network Biology Approach to
Complex Diseases

LECTURE 3.
Information flow
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Recap from lectures 1-2

* We discussed approaches that use genotype
and/or expression data to label genes as dys-
regulated and search for modules containing
such dys-regulated genes

« Some methods ensured additionally
“consistency” of the modules (JACT, module
cover)

« Emphasize of this lecture — information flow from
genetic perturbations to gene expression
perturbation



Information flow from genetoypc changes
to expression changes

Gene
expression

Copy number aberrations
or/and mutations
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Which gene is associated locus is most likely to drive the
expression changes of atarget gene?

Gene
expression
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Genes in the locus

Locus with genotypic changes that correlate
with expression changes of target gene

Kim et al. PloS CB 2011



Shortest path approach

Gene predicted to
be most likely
cause

Target gene

Possible causal
genes

Assumptions
« the gene closest in the network is the most likely driver
* genes on the shortest path are the intermediate nodes

Advantages: the simplest assumption one can make in absence of additional
information

Disadvantages: Does not utilize expression data; Strongly impacted by netwokr bias
and noise



Stelner tree

« Analogous to the shortest path idea: find a minimum size
tree connecting all selected nodes

(thus individual paths might not be shortest possible but rather the total
IS minimized)

Steiner tree

Context - we assume C1,C2,C3 influence the target node and we use Steiner tree
to model how information is propagated
Comment - many equivalent solutions might exist



Example

Huang S.S., Fraenkel E. Integrating proteomic, transcriptional, and interactome data
reveals hidden components of signaling and regulatory networks Science Signaling
2(81):ra40

Prize-collecting Steiner tree problem where not all the termini are required to be
included in the solution.

« There is a cost of not including a terminal node
« There is a price for using edges to include a terminal in the network.

* Find minimum-weighted subtree that connects a subset of the termini to each other
through the edges of the interactome graph and additional nodes not in the terminal
set

In Huang et al, a parameter 3 weights the penalties of excluding terminal nodes relative
to the cost of including edges



Results using a variant of the method integrating optimal and suboptimal Steiner trees
terminal nodes for comparative analysis two glioblastoma cell lines with different
expression of EGFRVIII)
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Huang S-sC, Clarke DC, Gosline SJC, Labadorf A, et al. (2013) Linking Proteomic and Transcriptional Data through the
Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling. PLoS Comput Biol 9(2): €1002887.
doi:10.1371/journal.pcbi.1002887


http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002887

Flow based approaches

Current Flow - edges have resistance
Network Flow - edges have capacitances

Key Component: Kirchhoff low or flux balance requirement



eQTLNet

Combines eQTL analysis with network
Information and network flow approaches

Kim et al. PloS CB 2011



Copy number aberratiens
or/and mutations
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Copy number aberratiens
or/and mutations
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Selecting “signature” genes

Cancer Cases
Gene expression data

Gene 1 . ... .

Gene 4

Geng, 3

target genes
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Kim et al. PloS CB 2011
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Selecting “signature” genes
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Smallest set of genes so that each
case is “covered” at least specified
number of times



Copy nu#sioer aberrations
or/andg mutations
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Genes differentially
expressed in case/control

Kim et al. PloS CB 2011



Associations between copy number variations
and gene expression of selected target genes
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CNV data Gene expression data



Significant correlation between CNV and
expression
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Significant correlation between CNV and
expression

Cancer Cases
Gene expression dat
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Significant correlation between CNV and
expression
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Uncovering pathways of information flow between
CNV and target gene

Cancer Cases
Gene expression de
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Using expression to guide path discovery
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Gene expression de
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Translating probabilities it resistances
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Resistance - set to favor most likely path -based on gene expression values
(reversely proportional to the average correlation of the expression of the adjacent genes with
expression of the target gene)



Finding subnetworks with significant current flow
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Resistance - set to favor most likely path -based on gene expression values
(reversely proportional to the average correlation of the expression of the adjacent genes with
expression of the target gene)



Finding subnetworks with significant current flow

Putative driver
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Resistance - set to favor most likely path -based on gene expression values
(reversely proportional to the average correlation of the expression of the adjacent genes with
expression of the target gene)



Selecting causal genes

(weighted vertex cover)

Causal gene has copy number variation in the given case
and low p-value pathway connecting it to a target gene that is differentially
expressed in the same case; # of such target genes = edge weight
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Recall — we should not over-interpret the role of
iIndividual edges!
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The Lute Player, Hendrick Maertensz Sorgh (1610-1670),

Rijksmuseum, Amsterdam
(public domain)



Cancer Cases
CNV data
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Which pathways connect genotype to target
gene ?

Cancer Cases

Cancer Cases
CNV data

Gene expression data
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Are there common functional pathways?

Cancer Cases
CNV data

Cancer Cases
Gene expression data

target gene/module

Z - target gene/module

Kim et al. PloS CB 2011



Gene Hubs

E2F1(88)

MYC(110) E2F4(43) CREBBP(34)  GRB2(27) SP3(26)

TFAP2A(25)  NFKB1(23) MYB(22) JUN(22) E2F2(22) RELA(21)
SP1(20) RPS27A(20) MAPK3(19)  POUSF1(17) HIF1A(16) PPARA(15)
UBA52(13)  CDK7(13) YBX1(13) YWHAZ(12)  CEBPB(12) POU2F1(12)

SMAD3(11)  TAL1(11)

Driving Copy number
aberrations
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GO biological process

cell cycle arrest

epidermal growth factor receptor signaling pathway
negative regulation of cell growth

Ras protein signal transduction

regulation of sequestering of triglyceride

cell proliferation

nuclear mRNA splicing, via spliceosome
regulation of cholesterol storage
nucleotide-excision repair

RNA elongation from RNA polymerase II promoter
insulin receptor signaling pathway

transcription initiation from RNA polymerase II promoter
N-terminal peptidyl-lysine acetylation
phosphoinositide-mediated signaling

positive regulation of lipid storage

positive regulation of specific transcription from RNA
polymerase II promoter

positive regulation of epithelial cell proliferation
base-excision repair

negative regulation of hydrolase activity

gland development

positive regulation of MAP kinase activity
regulation of nitric-oxide synthase activity

estrogen receptor signaling pathway

regulation of receptor biosynthetic process

response to organic substance

JAK-STAT cascade

regulation of transforming growth factor-beta2
production

G1/S transition of mitotic cell cycle

SMAD protein nuclear translocation

Pathway Hubs
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Design details under the hood

e Current flow reduces to solving a set of linear equations (Kirchhoff's
laws)
Caveat: We had to solving a linear system with 20,000 variables
thousands of times for permutation test required some care

* Many biological interactions are directional. This can be taken care by
solving linear program with corresponding constraints - Caveat: the
network is to big for solving thousands of linear programs

* Null model and p-value estimations

Kim, Wuchty, Przytycka — PloS Comp Bio 2011
Kim, Przytycki, Wuchty, Przytycka — Phys. Bio. 2011
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(b)

Kim, Przytycki, Wuchty, Przytycka — Phys. Bio. 2011
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Rate limiting step inverting many matrices
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Schur decomposition to
minimize total cost of matrix
Inversions
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Note that the dense submatirx representing the
network is common for all instances of the flow
problem



Summary

Optimum connection approach Information flow/ diffusion approach
« Shortest Path « Current Flow
e Steiner tree  Hot Net

Return smaller number of genes easier to More focused on group of genes
analyze from the perspective of individual and gene modules

genes.

More strongly depends of quality of

network



Current Flow versus Random Walk

Current flow is equivalent (with appropriate edge weights) to the random walk:
Starting at a given node move to an adjacent node with probability provided by
edge weight, what is probability of ending at a terminal node starting at a given

start node?

I 0.5

\

g

\0,4
Edge weights around each node need to
\‘ sum up to one

The equivalency is lost if we restrict the number of steps, loose
Information at each step etc.



